On the unconditional convergence of wavelet expansions for continuous functions
نویسندگان
چکیده
In this paper, we study the unconditional convergence of wavelet expansions with Lipschitz wavelets. Especially with the Strömberg wavelet, we shall construct a counter example which shows that uniformly convergent wavelet expansions even for continuous functions do not always converge unconditionally in L∞(R). KeywordsUnconditional Convergence, Wavelet Expansion, Strömberg Wavelet. AMS Mathematics Subject Classification (2010) 42C15, 65T60
منابع مشابه
Quasi-orthogonal expansions for functions in BMO
For {φ_n(x)}, x ε [0,1] an orthonormalsystem of uniformly bounded functions, ||φ_n||_{∞}≤ M
متن کاملModified Wavelet Method for Solving Two-dimensional Coupled System of Evolution Equations
As two-dimensional coupled system of nonlinear partial differential equations does not give enough smooth solutions, when approximated by linear, quadratic and cubic polynomials and gives poor convergence or no convergence. In such cases, approximation by zero degree polynomials like Haar wavelets (continuous functions with finite jumps) are most suitable and reliable. Therefore, modified numer...
متن کاملPointwise Convergence of a Class of Non-orthogonal Wavelet Expansions
Non-orthogonal wavelet expansions associated with a class of mother wavelets is considered. This class of wavelets comprises mother wavelets that are not necessarily integrable over the whole real line, such as Shannon’s wavelet. The pointwise convergence of these wavelet expansions is investigated. It is shown that, unlike other wavelet expansions, the ones under consideration do not necessari...
متن کاملA numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method
In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...
متن کاملSolving optimal control problems with integral equations or integral equations - differential with the help of cubic B-spline scaling functions and wavelets
In this paper, a numerical method based on cubic B-spline scaling functions and wavelets for solving optimal control problems with the dynamical system of the integral equation or the differential-integral equation is discussed. The Operational matrices of derivative and integration of the product of two cubic B-spline wavelet vectors, collocation method and Gauss-Legendre integration rule for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJWMIP
دوره 14 شماره
صفحات -
تاریخ انتشار 2016